

Test Solution

Booster Engineering

Test Code : PT01-1617-BE

Answer & Solution Mathematics

5. A. $\theta \in \left(0, \frac{\pi}{4}\right) \Rightarrow \tan \theta < 1 \text{ and } \cos \theta > 1.$ $|x|^2 - 3|x| + 2 = 0$ 1. B. $\Rightarrow (|x|-2) (|x|-1) = 0$ Let $\tan \theta = 1 - x$ and $\cot \theta = 1 + y$, where $\Rightarrow |x|=1 \text{ or } 2$ $\Rightarrow x = \pm 1, \pm 2$ x, y > 0 and are very small, then $t_1 = (1-x)^{1-x}, t_2 = (1-x)^{1-y}, t_3 = (1+y)^{1-x}, t_4 = (1+y)^{1+y}$ 6. B. Given that $|z_1|=12$. Therefore, z_1 lies on a Clearly, $t_4 > t_3$ and $t_1 > t_2$. Also $t_3 > t_1$. circle with centre (0, 0) and radius 12 units. As $|z_2-3-4i|=5$ so z_2 lies on a Thus, $t_4 > t_3 > t_1 > t_2$ circle with centre (3, 4) and radius 5 units 2. D. From the given relation. Then $|z_1 - z_2| = AB = OA - OB =$ $m+n=2 \tan \theta, m-n=2 \sin \theta$ 12-2(5) = 2. As it is the minimum value, $\Rightarrow m^2 - n^2 = 4 \tan \theta \sin \theta$(1) we must have $|z_1 - z_2| \ge 2$. Also $\left(\frac{x-1}{2}\right)^3 = 1$ 7. B. $4\sqrt{mn} = \sqrt{\tan^2 \theta - \sin^2 \theta} = 4\sin\theta \tan\theta \dots(2)$ $\Rightarrow \frac{x-1}{2} = 1, \omega, \omega^2$ From Eqs. (1) and (2), we get $m^2 - n^2 = 4\sqrt{mn}$ $\Rightarrow x = -1, 1 - 2\omega, 1 - 2\omega^2$ 3. C. given equation The is 8. B. If x, y and z are in G.P. (x, y, z > 1), then $\tan x + \sec x = 2\cos x$ $\log x$, $\log y$, $\log z$ are in A. P. Hence. $\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = 2\cos x$ $1 + \log x$, $1 + \log y$, $1 + \log z$ will also be in A. P. $\Rightarrow \sin x + 1 = 2\cos^2 x$ $\Rightarrow \frac{1}{1 + \log x}, \frac{1}{1 + \log y}, \frac{1}{1 + \log z}$ will be in $\Rightarrow \sin x + 1 = 2 - 2\sin^2 x$ $\Rightarrow 2\sin^2 x + \sin x - 1 = 0$ H.P. $\Rightarrow \sin x = \frac{1}{2}, -1$ 9. B (Step - 1) $\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2} \in [0, 2\pi]$ $2\log_{10} x - \log_x 0.01 = \log_{10} x - \frac{\log_{10} 0.01}{\log_{10} x}$ But for $x = \frac{3\pi}{2}$ the given equation is not $= 2\log_{10} x + \frac{2}{\log_{10} x}$ $\infty - \infty$ satisfied, as then is an $= 2 \left[\log_{10} x + \frac{1}{\log_{10} x} \right]$ indeterminate from. Therefore, there are only two solution. Given that $4A + A + A = 180^{\circ} \Rightarrow A = 30^{\circ}$ [Hence $x > 1 \Rightarrow \log_{10} x > 0$] **4. A**. \Rightarrow Angles are 120°, 30°, 30° (Step - 2) Now, A.M. \geq G.M. $\Rightarrow \frac{\sin 120^\circ}{a} = \frac{\sin 30^\circ}{b} = \frac{\sin 30^\circ}{c} = 2R \text{ (say)}$ $\Rightarrow \frac{\log_{10} x + \frac{1}{\log_{10} x}}{2} \ge \left(\log_{10} x \frac{1}{\log_{10} x}\right)^{1/2}$ $\Rightarrow \frac{a}{a+b+c} = \frac{\sin 120^{\circ}}{\sin 120^{\circ} + \sin 30^{\circ} + \sin 30^{\circ}}$ $=\frac{\sqrt{3}}{2+\sqrt{3}}$ $\Rightarrow \log_{10} x + \frac{1}{\log_{10} x} \ge 2$

10. C. The letter of word COCHIN in alphabetic order are C, C, H, I, N, O. Fixing first letter C and keeping C at second plane, rest 4 can be arranged in 4! Ways.

> Similarly, the total number of words staring with CH, Cl. CN is 4! In each case.

> Then fixing first two letters as Co, next four places when filled in alphabetic order gives the word COCHIN.

> Therefore, number of words coming before COCHIN is $4! \times 4 = 4 \times 24 = 96$.

- 11. C. The expression given is $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$. We know that
- $(x+a)^{n} + (x-a)^{n} = 2 \left[{}^{n}C_{0}x^{n} + {}^{n}C_{2}x^{n-2}a^{2} + {}^{n}C_{4}x^{n-4}a^{4} + \dots \right]$ Therefore the given expression is equal to $2[{}^{5}C_{0}x^{5} + {}^{5}C_{2}x^{3}(x^{3}-1) + {}^{5}C_{4}x(x^{3}-1)^{2}].$

Maximum power of x involved here is 7, also only +ve integral power of x are involved, therefore the given expression is a polynomial of degree 7.

- **12. D.** The maximum of two numbers will be less than 4 or at least one of the numbers is less than 4.
 - \therefore P(at least one numbers < 4) = 1- P (both the numbers ≥ 4)

$$=1 - \frac{3}{6} \times \frac{2}{5}$$
$$=1 - \frac{6}{30}$$
$$==1 - \frac{1}{5} = \frac{4}{5}$$

Page | 2 **13. C.** Given line L : 2x + y = k passes through point (say P) which divides a lone segment (say AB) in ratio 3:2, where A (1, 1) and B (2, 4). Using section formula, the coordinate of the point O which divides AB internally in the ratio 3 : 2 are $P\left(\frac{3\times 2+2\times 1}{3+2},\frac{3\times 4+2\times 1}{3+2}\right)=P\left(\frac{8}{5},\frac{14}{5}\right).$ Also, since the line L passes through P, hence substituting the coordinates of $P\left(\frac{8}{5},\frac{14}{5}\right)$ in equation the of L: 2x + y = k, we get $2\left(\frac{8}{5}\right) + \left(\frac{14}{5}\right) = k$ · . 14. B. Take any point B(0, 1) on given line Equation of AB' $y - 0 = \frac{-1 - 0}{0 - \sqrt{3}} (x - \sqrt{3})$ $-\sqrt{3}y = -x + \sqrt{3} \Rightarrow x - \sqrt{3}y = \sqrt{3}$ \Rightarrow $\sqrt{3}v = x - \sqrt{3}$ \Rightarrow **Alternate Solution** Slope of given line is $-\frac{1}{\sqrt{2}}$. From figure, equation of reflected ray is $y = \frac{1}{\sqrt{3}}(x - \sqrt{3}) \Rightarrow \sqrt{3}y = x - \sqrt{3}$ **15. A.** I $x-3-2\sqrt{x-4} \ge 0$

$$x-3 \ge 2\sqrt{x-4}$$

$$(x-3)^{2} \ge 4(x-4)$$

$$x^{2}-6x+9 \ge 4x-16$$

$$x^{2}-16x+25 \ge 0$$

$$(x-5)^{2} \ge 0$$

$$x \in R \text{ but } x>4$$

$$\Rightarrow [4,\infty) \qquad \dots (i)$$
II $(x-3)+2\sqrt{x-4} \ge 0$

$$(x-3)^{2} \ge h(x-4)$$

$$x^{2}-6x+9-4x+16 \ge 0$$

$$x^{2}-1x+25 \ge 0$$

$$(x-5)^{2} \ge 0$$

$$x \in R \text{ but as } x > 4$$

$$\Rightarrow [4,\infty) \qquad \dots (ii)$$
Hence, I & II

N-1, City Centre, Sector – 4, Bokaro Steel City (In-front of Jai Jawan Petrol Pump) Phone : +916542 231126, 09204793968 :: www.eduvibrant.com, email :: info@eduvibrant.com

[4,∞)

16. C.
$$\lim_{n \to \infty} \frac{\sin 2x - 2x \tan x}{4 \sin^4 x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x - 2x \tan x}{4 \sin^4 x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x - 2 \tan x}{4 \sin^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{4 \sin^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{2 \sin^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{2 \tan^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{2 \tan^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{2 \tan^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{2 \tan^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{2 \tan^4 x} - 2 \tan x}$$

$$= \lim_{n \to \infty} \frac{x \tan^2 x}{2 \tan^4 x} - 2 \tan^2 x}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x \tan^2 x}{1 - \tan^2 x}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x \tan^2 x}{1 - \tan^2 x}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x \tan^2 x}{1 - \tan^2 x}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1 - 1 - 1}$$

$$= \frac{1}{2} \lim_{n \to \infty} \frac{x^2 - x^2}{1 - 1$$

Now, f'(m) = 0 $\Rightarrow m^2 = 4 \Rightarrow m = \pm 2$ $\Rightarrow f(2) = 0 \text{ and } f(-2) = 8$

Since , the area cannot be zero, hence the required value of m is -2.

24. D.

$$X = \{4^{n} - 3n - 1 : n \in \mathbb{N}\}$$

$$X = \{0,9,54,243,....\} \quad [put n = 1,2,3....]$$

$$Y = \{9(n-1) : n \in \mathbb{N}\}$$

$$Y = \{0,1,18,27,....\}$$

It is clear that $X \subset Y$.

$$\therefore \qquad X \cup Y = Y$$

25. A. To find The shortest distance between y – x = 1 and $x = y^2$ along the common normal. Tangent at P is parallel to y = x + 1.....(i) Slope of tangent at $P(t^2, t)$. $\Rightarrow \quad \frac{dy}{dx} = \left(\frac{1}{2y}\right)_{x^2 \to y^2} = \frac{1}{2t}$(ii) $\Rightarrow \frac{1}{2t} = 1$ [Eqs. (i) and (ii) are parallel] $t = \frac{1}{2}$ $P\left(\frac{1}{4},\frac{1}{2}\right)$ Shortest distance = $|PQ| = \frac{\left|\frac{1}{4} - \frac{1}{2} + 1\right|}{\sqrt{1 + 1}} = \frac{3}{4\sqrt{2}}$ Hence, shortest distance is $\frac{3\sqrt{2}}{2}$. **Alternate Solution** x - y + 1 = 0.....(i) $x = y^2$ $1 = 2y \frac{dy}{dx}$ $\frac{dy}{dx} = \frac{1}{2y}$ = slope of the line (i) \Rightarrow $\frac{1}{2y} = 1 \Longrightarrow y = \frac{1}{2}$ \Rightarrow $x = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ \Rightarrow The point is $(x, y) = \left(\frac{1}{4}, \frac{1}{2}\right)$ \Rightarrow The shortest distance is *.*.. $\frac{\left|\frac{1}{4} - \frac{1}{2} + 1\right|}{\frac{1}{4} - \frac{1}{2}} = \frac{3}{4\sqrt{2}} = \frac{3\sqrt{2}}{8}$

Page | 4

26. B. Given graph is symmetrical about the line

$$x = 2$$

 \therefore $f(2+x) = f(2-x)$
27. A. $\lim_{x \to \frac{\pi}{4}} \frac{\int_{-2}^{2} f(t)dt}{x^2 - \frac{\pi^2}{16}} \left(\frac{0}{0} \operatorname{from}\right)$
 $= \lim_{x \to \frac{\pi}{4}} \frac{f(\cos^2 x)2 \sec x \sec x \tan x}{2x}$
 $= \frac{2f(2)}{\pi/4} = \frac{8f(2)}{\pi}$

Since $f(x) = g(x)\sin x$ $f'(x) = g'(x)\sin x + g(x)\cos x$

and

 $f''(x)g''(x)\sin x + 2g'(x)\cos x - g(x)\sin x \Longrightarrow f''(0) = 0$

Thus $\lim_{x \to 0} [g(x)\cos x - g(g)\cos ecx] = 0f''(0)$

28. D. Sum of 16 observation = $16 \times 16 = 256$ Sum of resultant 18 observation = 256-16+(3+4+5)=252

Mean of observation = $\frac{252}{18} = 14$

29. C. Statement I

Analysis given, a parabola $y^2 = 16\sqrt{3}x$ and an ellipse $2x^2 + y^2 = 4$.

To find The equation of common tangent to the given parabola and the ellipse. This can be very easily done by comparing the standard equation of tangents. Standard equation of tangent with slope 'm' to the parabola $y^2 = 16\sqrt{3}x$ is

$$y = mx + \frac{4\sqrt{3}}{m} \qquad \dots (i)$$

Standard equation of tangent with slope '*m*' to the ellipse $\frac{x^2}{2} + \frac{y^2}{4} = 1$ is

$$y = mx \pm \sqrt{2m^2 + 4} \qquad \dots (ii)$$

If a line L is a common tangent to both parabola and ellipse, then

L should be tangent to parabola, i.e., its equation should be like Eq. (i).

L Should be tangent to ellipse i.e., its equation should be like Eq. (ii).

i.e., L must be like both of the Eqs. (i) and (ii).

Hence, comparing Eqs. (i) and (ii), we get

$$\frac{1}{m} = \pm \sqrt{2m^2 + 4}$$

On squaring both sides we get

$$m^{2}(2m^{2}+4) = 48$$

$$m^{4} + 2m^{2} + 24 = 0$$

$$(m^{2}+6)(m^{2}-4) = 0$$

$$m^{2} = 4$$

$$[\because m^{2} \neq -6]$$

$$m = \pm 2$$

Statement II

 \Rightarrow

In Statement II, we have already seen that, if the line $y = mx + \frac{4\sqrt{3}}{m}$ is a common tangent to the parabola $y^2 = 16\sqrt{3} \times$ and the ellipse $\frac{x^2}{2} + \frac{y^2}{4} = 1$, then is satisfies the equation $m^4 + 2m^2 - 24 = 0$. Hence, Statement II is also correct but is ot able to explain the Statement I, it is an intermediate step in the final answer.

30. D. ~ [~
$$s \lor (~ r^{s})$$
]

$$=s^{\wedge} (\sim r^{\wedge}S)$$
$$=s^{\wedge}(r \vee \sim s)$$
$$=(s^{\wedge}r) \vee (s^{\wedge} \sim s)$$
$$=(s^{\wedge}r) \vee 0$$
$$=s^{\wedge}r$$

Answer & Solution Physics

- **31. (D)** Momentum, $p = mv = MLT^{-1} = ML^{-1}$ = DV^4F^{-3}
- 32.(D) $X = M^{-1}L^{3}T^{-2}$ $\frac{\Delta X}{X} = \frac{\Delta M}{M} + 3\frac{\Delta L}{L} + 2\frac{\Delta T}{T}$ $= 2 + 3 \times 3 + 2 \times 4 = 19$
- **33.(D)** Distance covered by the object in first 2 s

$$h_1 = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 2^2 = 20m$$

Similarly, distance covered by the object in next 2 s will also be 20 m, hence the required height = H - 20 - 20

= H - 40 m

34.(C) Maximum acceleration will be from 30 to 40 s, because slope in this interval is maximum.

$$a = \frac{v_2 - v_1}{t_2 - t_1} = \frac{60 - 20}{40 - 30} = 4ms^{-1}$$

35.(A)
$$\vec{v}_c = 25\hat{i}, \vec{v}_{b/c} = 25\sqrt{3}\hat{j}$$

$$\vec{V}_{b/c} = \vec{V}_b - \vec{V}_c \Longrightarrow \vec{V}_b = \vec{V}_{b/c} + \vec{V}_c$$
$$\Rightarrow \quad \vec{v}_b = 25\hat{i} + 25\sqrt{3}\hat{j}$$

$$|v_b| = \sqrt{25^2 + (25\sqrt{3})^2} = 50 \,\mathrm{km} \,\mathrm{h}^{-1}$$

$$\tan \theta = \frac{25}{25\sqrt{3}} = \frac{1}{\sqrt{3}} \Longrightarrow \theta = 30^{\circ}$$

36.(B) H = 100 m, R = $2 \times 200 = 400$ m

$$\tan \theta = \frac{4H}{R} \Longrightarrow \tan \theta = \frac{4 \times 100}{400} = 1$$
$$\implies \theta = 45^{\circ} \qquad \left[\because \frac{H}{R} = \frac{\tan \theta}{4} \right]$$

R

$$a = \frac{P}{M+m}$$
(i)

The FBD of mass m is shown in the figure.

$$R\sin\beta = ma \qquad (ii)$$

$$\cos \beta = mg$$
 (iii)

$$a = g \tan \beta$$

Putting the value of a in (i), we get

$$P = (M + m)g \tan \beta$$

38.(B) Here

or

$$a = \frac{m_1 - m_2}{m_1 + m_2} g,$$

f
$$m_1 > m_2$$
.

But
$$a = g/8$$

$$\frac{g}{8} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)g$$
$$m \cdot m = 9 \cdot 7$$

39.(C) Given horizontal force F = 25 N and coefficient of friction between block and wall (μ) = 0.4.

We know that at equilibrium horizontal force provides the normal reaction to the block against the wall. Therefore, normal reaction to the block (R) = F = 25 N.

We also know that weight of the block (W) = Frictional force

$$= \mu R = 0.4 \times 25 = 10$$
 N.

40.(D) Net force, $\vec{F} - mg\hat{i} = m(a_0\hat{j} - 2a_0\hat{i})$ $\Rightarrow \vec{F} = m \left(-2a_0 \hat{i} + (a_0 + g) \hat{j} \right) = m \left(-g \hat{i} + \frac{3g}{2} \hat{j} \right)$ $\Rightarrow F = m \sqrt{g^2 + \left(\frac{3g}{2}\right)^2} = \frac{\sqrt{13}mg}{2}$ $R \cos \beta_{\blacktriangle}$ $\rightarrow R \sin \beta$ **41.(C)** Let us assume that the displacement of the body is directly proportional to t^n , i.e., $s = Kt^n, v = \frac{ds}{dt} = Knt^{n-1}$ and $a = \frac{dv}{dt} = Kn(n-1)t^{n-2}$ Force $F = ma = mKn(n-1)t^{n-2}$ Power, $P = Fv = [mKn(n-1)t^{n-2}] [Knt^{n}]$ ⁻¹1 $= mkn^2(n-1)t^{2n-3}$ As power is constant, i.e, independent of time, hence 2n-3=0 or $n=\frac{3}{2}$ or $s \propto t^{\frac{3}{2}}$ **42.(D)** $f(x) = -\frac{dU}{dx}(x)$ or $U(x) = -\int F(x)dx$ Here F(x) = -kx, where k is a positive constant. **43.(A)** $m_1u_1 = m_2v_2$ $\frac{1}{2}m_2v_2^2 = \frac{1}{2}\left|\frac{1}{2}m_1u_1^2\right|$ $\Rightarrow (m_2 v_2) v_2 = \frac{1}{2} (m_1 u_1) u_1 \Rightarrow v_2 = \frac{u_1}{2}$ $e = \frac{v_2 - v_1}{u_1 - u_2} = \frac{v_2 - 0}{u_1 - 0} = \frac{v_2}{u_1} \implies e = \frac{1}{2}$

44.(A) In this problem, the velocity of the earth before and after the collision may be assumed zero. Hence, coefficient of restitution will be

$$e^n = \frac{v_1}{v_0} \times \frac{v_2}{v_1} \times \frac{v_3}{v_2} \times \dots \times \frac{v_n}{v_n - 1}$$

where v_n is the velocity after *n*th rebounding and v_0 is the velocity with which the ball strikes the earth for the first time.

ence,
$$e^n = \frac{v_n}{v_0} = \frac{\sqrt{2gh_n}}{\sqrt{2gh_0}}$$

H

where h_n is the height to which the ball rises after *n*th rebounding. Hence,

$$e^n = \frac{v_n}{v_0} = \frac{\sqrt{h_n}}{\sqrt{h_0}}$$

45.(A) Mass of each of the four parts $=\frac{M}{3}$

Mass of the plate including the cut piece = $\frac{4M}{3}$

Moment of inertia of the whole plate (including the cut piece) about the said

axis =
$$\left(\frac{4M}{3}\right)\frac{l^2}{6}$$

Now moment of inertia of the remaining portion should be $\frac{3}{4}$ of the above = $Ml^2/6$

46.(A) <i>T</i> ₁	$6.(\mathbf{A}) T_1 - mg = ma$		50.(C) $m = alp$, m and ρ are constants.		
	$r(T_2-T_2)=I\alpha$			$a_1 l_2 3$	
	$Mg - T_3 = Ma$ $r(T_3 - T_2) = I\alpha$			$\therefore \frac{1}{a_2} = \frac{1}{l_1} = \frac{1}{2}$	
				F1 1	
and $a = R\alpha$			Now, $Y = \frac{Tt}{a\Delta l}$ or $\Delta l \propto \frac{t}{a}$		
Fr	From Eqs. (ii) and (iv), we get			u u	
	$T_3 - T_1 = \frac{2Ia}{R^2}$			or $\frac{\Delta l_1}{\Lambda l_2} = \frac{l_1}{l_2} \times \frac{a_2}{a_1} = \frac{2}{3} \times \frac{2}{3}$ or $\frac{\Delta l_1}{\Lambda l_2} = \frac{4}{9}$	
Fr	From Eqs. (i) and (iii), we get $(M-m)g = (M+m)a + T_3 - T_1$				
	(M-m)g = ($(-m)a + \frac{2Ia}{r^2}$	51.(B)		
	$a = \frac{(M-m)g}{\left(M+m+\frac{2I}{r^2}\right)}$			2 m h $3 m$ $3 m$	
	minimum	,		Volume equality gives	
			-	$2 \times 3 = \frac{1}{2} \times h \times 3 \implies h = 4 \text{ m}$	
	m m mg	$M \downarrow a$		$\therefore \tan \theta = \frac{4}{3} = \frac{a}{g} \Rightarrow a = \frac{4}{3}g$	
		Mg	52.(B)	Using equation of continuity, we have	
47.(A) To	(A) Total mechanical energy is given by $E = K + u = -\frac{GMm}{M} - \frac{GMm}{M} = \frac{-GMm}{M}$			$v_2 = \frac{A_1}{A_2} v_1$	
	$\frac{GM}{a} = v^2 \implies E = -\frac{1}{2}mv^2$ (C) $E = -\frac{Gm^2}{2} \implies \frac{mv^2}{2} = \frac{Gm^2}{2}$			From Bernoulli's theorem,	
18 (C) F				$p_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2$	
40.(C) T	$\frac{1}{Gm} = \frac{1}{4R^2} = \frac{1}{R} = \frac{1}{4R^2}$			$p_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2 \implies g(h_1 - h_2) = \frac{1}{2} (v_2^2 - v_1^2)$	
$\therefore v = \frac{1}{2}\sqrt{\frac{3m}{R}}$				$\Rightarrow 60 = \left(\frac{A_1^2}{A_2^2} - 1\right) v_1^2 \Rightarrow \frac{A_1}{A_2} = \frac{4}{1}$	
49.(C) Work done $=\frac{1}{2}F \times \text{Extension}$			52 (D)	If the sheet is heated than both d and d	
	1 YA .	$F \times L$	33.(D)	in the sheet is heated then both a_1 and a_2	
	$=\frac{-\times}{2}\times\frac{1}{L}\times1$	$Y = \frac{1}{A \times 1}$		will increase since the thermal	
	$=\frac{YA}{2L}$	$F = \frac{YA}{L}$		true photographic enlargement.	
		1			

54.(D) According to Newton's law of cooling

$$\frac{\theta_1 - \theta_2}{t} \propto \left[\frac{\theta_1 + \theta_2}{2} - \theta\right]$$

For the first condition

$$\frac{80-60}{60} \propto \left[\frac{80+60}{2} - 30\right]$$
(i)

and for the second condition

$$\frac{60-50}{t} \propto \left[\frac{60+50}{2} - 30\right]$$
(ii)

By solving Eqs. (i) and (ii), we get t = 48 s.

55.(A) From ideal gas equation,

 $PV = \mu RT$ $\therefore P = \frac{\mu R}{V}T$

Comparing, this equation with y = mxSlope of line, $\tan \theta = m = \mu R/V$

i.e., $V \propto \frac{1}{\tan \theta}$

If means line of smaller slope represents greater volume of gas.

For the given problem figure

Points 1 and 2 are on the same line, so they will represents same volume, i.e., $V_1 = V_2$.

Similarly points 3 and 4 are on the same line, so they will represents same volume, i.e., $V_3 = V_4$.

But $V_1 > V_3$ (= V_4) or $V_2 > V_3$ (= V_4) as slope of line 1–2 is less than that of 3–4.

56.(C) In second part there is a vacuum, i.e., P = 0. So work done in expansion = $P\Delta V = 0$.

Also, $\Delta Q = 0$. From the first law of thermodynamics, $\Delta U = 0$

i.e., temperature of an ideal gas remains same due to free expansion.

57. (B)

58.(C)
$$v_1 = \omega \sqrt{a^2 - x_1^2}$$
, $v_2 = \omega \sqrt{a^2 - x_2^2}$
We get, $a = \sqrt{\frac{v_1^2 x_2^2 - v_2^2 x_1^2}{v_1^2 - v_2^2}}$
59.(D) $y = 4 \sin\left(4\pi t - \frac{\pi}{16}x\right)$
 $\omega = 4\pi$, $k = \pi/16$
 $v = \frac{\omega}{k} = \frac{4\pi}{\pi/16} = 64$ cm/s

In positive *x*-direction

60.(C) Node means a point at which medium particles do not displace from its mean position and antinode mean a point at which particles oscillate with maximum possible amplitude. Nodes and antinodes are obtained for both types of stationary waves, transverse and longitudinal. Hence, options (A) and (B) both are wrong . To obtain a stationary wave, two waves travelling in opposite directions, having same amplitude, same frequency are required. They must have same nature, means either both of the wave should be longitudinal or both of them should be transverse. Hence, option (C) is correct.

Answer & Solution Chemistry

N-1, City Centre, Sector – 4, Bokaro Steel City (In-front of Jai Jawan Petrol Pump) Phone : +916542 231126, 09204793968 :: www.eduvibrant.com, email :: info@eduvibrant.com

